Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase
نویسندگان
چکیده
Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na(+)/H(+) exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses.
منابع مشابه
Plasma Membrane Phosphatidylinositol 4,5 Bisphosphate Is Required for Internalization of Foot-and-Mouth Disease Virus and Vesicular Stomatitis Virus
Phosphatidylinositol-4,5-bisphosphate, PI(4,5)P(2), is a phospholipid which plays important roles in clathrin-mediated endocytosis. To investigate the possible role of this lipid on viral entry, two viruses important for animal health were selected: the enveloped vesicular stomatitis virus (VSV) - which uses a well characterized clathrin mediated endocytic route - and two different variants of ...
متن کاملPeste des Petits Ruminants Virus Enters Caprine Endometrial Epithelial Cells via the Caveolae-Mediated Endocytosis Pathway
Peste des petits ruminants virus (PPRV) causes an acute and highly contagious disease of sheep and goats and has spread with alarming speed around the world. The pathology of Peste des petits ruminants is linked to retrogressive changes and necrotic lesions in lymphoid tissues and epithelial cells. However, the process of PPRV entry into host epithelial cells remains largely unknown. Here, we p...
متن کاملInhibition of Foot-and-Mouth Disease Virus Replication by Hydro-alcoholic and Aqueous-Acetic Acid Extracts of Alhagi maurorum
Foot-and-mouth disease (FMD) is a major infectious disease of cloven-hoofed animals that is caused by the FMD virus (FMDV). This disease has significantly adverse economic impacts; therefore, rapid control measures are urgently. Traditional ranchers in Iran use Alhagi maurorum Medik. to treat FMD; therefore, we aimed to examine the antiviral activity of methanolic, ethanolic, and aqueous-acetic...
متن کاملThe transient expression of coat protein of Foot and Mouth Disease Virus (FMDV) in spinach (Spinacia oleracea) using Agroinfiltration
Foot and Mouth Disease (FMD) is a very dangerous livestock disease which causes a serious loss in the production of milk and meat. Therefore, producing an effective recombinant subunit vaccine virus this disease is of great importance. Transient gene expression is a valuable tool to reach rapid and acceptable recombinant vaccine. An Agrobacterium-mediated transient gene expression assay was car...
متن کامل